Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Virol ; 96(7): e0010022, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1728835

ABSTRACT

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Here, we investigated in ferrets the replication and transmission of swine H1N1 isolates P4 and G15, whose majority population had decreased polymerase activity and poor hemagglutinin (HA) stability, respectively. For both isolates, a minor variant was selected and transmitted in ferrets. Polymerase-enhancing variant PA-S321 airborne-transmitted and propagated in one ferret. HA-stabilizing variant HA1-S210 was selected in all G15-inoculated ferrets and was transmitted by contact and airborne routes. With an efficient polymerase and a stable HA, the purified minor variant G15-HA1-S210 had earlier and higher peak titers in inoculated ferrets and was recovered at a higher frequency after airborne transmission than P4 and G15. Overall, HA stabilization played a more prominent role than polymerase enhancement in the replication and transmission of these viruses in ferrets. The results suggest pandemic risk-assessment studies may benefit from deep sequencing to identify minor variants with human-adapted traits. IMPORTANCE Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility). Here, we used swine IAV isolates of the gamma lineage as a model to investigate the importance of HA stability and polymerase activity in promoting replication and transmission in ferrets. These are emerging viruses that bind to both α-2,6- and α-2,3-linked receptors. Using isolates containing mixed populations, a stabilized HA was selected within days in inoculated ferrets. An enhanced polymerase was also selected and propagated after airborne transmission to a ferret. Thus, HA stabilization was a stricter requirement, yet both traits promoted transmissibility. Knowing the viral traits needed for pandemic potential, and the relative importance of each, will help identify emerging viruses of greatest concern.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Protein Stability , Swine
2.
Appl Biosaf ; 27(2): 58-63, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1722150

ABSTRACT

Background: The Animal Biosafety Level 3 Enhanced (ABSL-3+) laboratory at St. Jude Children's Research Hospital has a long history of influenza pandemic preparedness. The emergence of SARS-CoV-2 and subsequent expansion into a pandemic has put new and unanticipated demands on laboratory operations since April 2020. Administrative changes, investigative methods requiring increased demand for inactivation and validation of sample removal, and the adoption of a new animal model into the space required all arms of our Biorisk Management System (BMS) to respond with speed and innovation. Results: In this report, we describe the outcomes of three major operational changes that were implemented to adapt the ABSL-3+ select agent space into a multipathogen laboratory. First were administrative controls that were revised and developed with new Institutional Biosafety Committee protocols, laboratory space segregation, training of staff, and occupational health changes for potential exposure to SARS-CoV-2 inside the laboratory. Second were extensive inactivation and validation experiments performed for both highly pathogenic avian influenza and SARS-CoV-2 to meet the demands for sample removal to a lower biosafety level. Third was the establishment of a new caging system to house Syrian Golden hamsters for SARS-CoV-2 risk assessment modeling. Summary: The demands placed on biocontainment laboratories for response to SARS-CoV-2 has highlighted the importance of a robust BMS. In a relatively short time, the ABSL-3+ was able to adapt from a single select agent space to a multipathogen laboratory and expand our pandemic response capacity.

3.
Nature ; 603(7902): 687-692, 2022 03.
Article in English | MEDLINE | ID: covidwho-1641974

ABSTRACT

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Subject(s)
COVID-19/pathology , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cricetinae , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL